Zariski F-decomposition and Lagrangian Fibration on Hyperkähler Manifolds

نویسنده

  • DE-QI ZHANG
چکیده

For a compact HyperKähler manifold X , we show certain Zariski decomposition for every pseudo-effective R-divisor, and give a sufficient condition for X to be bimeromorphic to a Lagrangian fibration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Families of Lagrangian fibrations on hyperkähler manifolds

A holomorphic Lagrangian fibration on a holomorphically symplectic manifold is a holomorphic map with Lagrangian fibers. It is known (due to Huybrechts) that a given compact manifold admits only finitely many holomorphic symplectic structures, up to deformation. We prove that a given compact manifold with b2 > 7 admits only finitely many deformation types of holomorphic Lagrangian fibrations.

متن کامل

Special Lagrangian fibrations. I. Topology,” Integrable systems and algebraic geometry (Kobe/Kyoto

Yau and Zaslow made a surprising conjecture about pairs of mirror manifolds, which, if true, should at last provide a true geometric understanding of mirror symmetry. Simply put, string theory suggests that if X andˇX are mirror pairs of n-dimensional Calabi-Yau manifolds, then on X there should exist a special Lagrangian n-torus fibration f : X → B, (with some singular fibres) such thatˇX is o...

متن کامل

Lagrangian Submanifolds in Hyperkähler Manifolds, Legendre Transformation

We develop the foundation of the complex symplectic geometry of Lagrangian subvarieties in a hyperkähler manifold. We establish a characterization, a Chern number inequality, topological and geometrical properties of Lagrangian submanifolds. We discuss a category of Lagrangian subvarieties and its relationship with the theory of Lagrangian intersection. We also introduce and study extensively a...

متن کامل

Hyperkähler SYZ conjecture and semipositive line bundles

LetM be a compact, holomorphic symplectic Kähler manifold, and L a non-trivial line bundle admitting a metric of semi-positive curvature. We show that some power of L is effective. This result is related to the hyperkähler SYZ conjecture, which states that such a manifold admits a holomorphic Lagrangian fibration, if L is not big.

متن کامل

Decomposition of symplectic vector fields with respect to a fibration in lagrangian tori

Given a fibration of a symplectic manifold by lagrangian tori, we show that each symplectic vector field splits into two parts : the first is Hamiltonian and the second is symplectic and preserves the fibration. We then show an application of this result in the study of the regular deformations of completely integrable systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009